939 resultados para Cathepsin L-like


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Taenia solium metacestode, a larval pork tapeworm, is a causative agent of neurocysticercosis, one of the most common parasitic diseases in the human central nervous system. In this study, we identified a cDNA encoding for a cathepsin L-like cysteine protease from the T solium metacestode (TsCL-1) and characterized the biochemical properties of the recombinant enzyme. The cloned cDNA of 1216 bp encoded 339 amino acids with an approximate molecular weight of 37.6 kDa which containing a typical signal peptide sequence (17 amino acids), a pro-domain (106 amino acids), and a mature domain (216 amino acids). Sequence alignments of TsCL-1 showed low sequence similarity of 27.3-44.6 to cathepsin L-like cysteine proteases from other helminth parasites, but the similarity was increased to 35.9-55.0 when compared to mature domains. The bacterially expressed recombinant protein (rTsCL-1) did not show enzyme activity; however, the rTsCL-1 expressed in Pichia pastoris showed typical biochemical characteristics of cysteine proteases. It degraded human immunoglobulin G (IgG) and bovine serum albumin (BSA), but not collagen. Western blot analysis of the rTsCL-1 showed antigenicity against the sera from patients with cysticercosis, sparganosis or fascioliasis, but weak or no antigenicity against the sera from patients with paragonimiasis or clonorchiasis. (c) 2006 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fasciola hepatica secretes cathepsin L proteases that facilitate the penetration of the parasite through the tissues of its host, and also participate in functions such as feeding and immune evasion. The major proteases, cathepsin L1 (FheCL1) and cathepsin L2 (FheCL2) are members of a lineage that gave rise to the human cathepsin Ls, Ks and Ss, but while they exhibit similarities in their substrate specificities to these enzymes they differ in having a wider pH range for activity and an enhanced stability at neutral pH. There are presently 13 Fasciola cathepsin L cDNAs deposited in the public databases representing a gene family of at least seven distinct members, although the temporal and spatial expression of each of these members in the developmental stage of F. hepatica remains unclear. Immunolocalisation and in situ hybridisation studies, using antibody and DNA probes, respectively, show that the vast majority of cathepsin L gene expression is carried out in the epithelial cells lining the parasite gut. Within these cells the enzyme is packaged into secretory vesicles that release their contents into the gut lumen for the purpose of degrading ingested host tissue and blood. Liver flukes also express a novel multi-domain cystatin that may be involved in the regulation of cathepsin L activity. Vaccine trials in both sheep and cattle with purified native FheCL1 and FheCL2 have shown that these enzymes can induce protection, ranging from 33 to 79%, to experimental challenge with metacercariae of F. hepatica, and very potent anti-embryonation/hatch rate effects that would block parasite transmission. In this article we review the vaccine trials carried out over the past 8 years, the role of antibody and T cell responses in mediating protection and discuss the prospects of the cathepsin Ls in the development of first generation recombinant liver fluke vaccines. Author Keywords: Helminths; Trematodes; Parasites; Cathepsins; Proteases; Vaccines; Immunology; Biochemistry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The N-terminal propeptide domains of several cathepsin L-like cysteine proteases have been shown to possess potent inhibitory activity. Here we report the first kinetic characterisation of the inhibition properties of the cathepsin V propeptide (CatV PP). Using a facile recombinant approach we demonstrate expression, purification and evaluation of the CatV PP. This propeptide was found to behave as a tight-binding inhibitor against CatV (K (i) 10.2 nm). It also functions as an inhibitor against other members of the CatL-like subclass (CatL, 9.8 nm; CatS, 10.7 nm; and CatK, 149 nm) and had no discernible effects upon the more distantly related CatB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human cathepsin L along with cathepsin S, K, and V are collectively known as cathepsin L-like proteases due to their high homology. The overexpression and aberrant activity of each of these proteases has been implicated in tumorigenesis. These proteases contain propeptide domains that can potently inhibit both their cognate protease and other proteases within the cathepsin L-like subfamily. In this investigation, we have produced the cathepsin S propeptide recombinantly and have shown that it is a potent inhibitor of the peptidolytic, elastinolytic, and gelatinolytic activities of the cathepsin L-like proteases. In addition, we show that this peptide is capable of significantly attenuating tumor cell invasion in a panel of human cancer cell lines. Furthermore, fusion of an IgG Fc-domain to the COOH terminus of the propeptide resulted in a chimeric protein with significantly enhanced ability to block tumor cell invasion. This Fc fusion protein exhibited enhanced stability in cell-based assays in comparison with the unmodified propeptide species. This approach for the combined inhibition of the cathepsin L-like proteases may prove useful for the further study in cancer and other conditions where their aberrant activity has been implicated. Furthermore, this strategy for simultaneous inhibition of multiple cysteine cathepsins may represent the basis for novel therapeutics to attenuate tumorigenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cysteine proteinase released in vitro by Fasciola hepatica was purified to homogeneity by Sephacryl S-200 gel filtration chromatography followed by QAE-Sephadex chromatography. The purified enzyme resolves as a single band with an apparent molecular size of 27 kDa on reducing SDS-polyacrylamide gel electrophoresis; however, under non-reducing conditions it migrates as multiple bands, each with enzymatic activity, in the apparent molecular size range 60-90 kDa. The sequence of the first 20 N-terminal amino acids of the enzyme shows considerable homology with cathepsin L-like proteinases. Immunolocalisation studies revealed that the cathepsin L-like proteinase is concentrated within vesicles in the gut epithelial cells of liver fluke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although Trypanosoma theileri and allied trypanosomes are the most widespread trypanosomes in bovids little is known about proteolytic enzymes in these species. We have characterized genes encoding for cathepsin L-like (CATL) cysteine proteases from isolates of cattle, water buffalo and deer that largely diverged from homologues of other trypanosome species. Analysis of 78 CATL catalytic domain sequences from 22 T. theileri trypanosomes disclosed 6 genotypes tightly clustered together into the T. theileri clade. The CATL genes in these trypanosomes are organized in tandem arrays of similar to 1.7 kb located in 2 chromosomal bands of 600-720 kb. A diagnostic PCR assay targeting CATL sequences detected T. theileri of all genotypes from cattle, buffaloes and cervids and also from tabanid vectors. Expression of T. theileri cysteine proteases was demonstrated by proteolytic activity in gelatin gels and hydrolysis of Z-Phe-Arg-AMC substrate. Results from this work agree with previous data using ribosomal and spliced leader genes demonstrating that CATL gene sequences are useful for diagnosis, population genotyping and evolutionary studies of T. theileri trypanosomes. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we describe the first survey in Thailand of Trypanosoma theileri, a widespread and prevalent parasite of cattle that is transmitted by tabanid flies. Investigation of 210 bovine blood samples of Thai cattle from six farms by hematocrit centrifuge technique (HCT) revealed 14 samples with trypanosomes morphologically compatible to T. theileri. Additional animals were positive for T. theileri by PCR based on the Cathepsin L-like sequence (TthCATL-PCR) despite negative by HCT, indicating cryptic infections. Results revealed a prevalence of 26 +/- 15% (95% CI) of T. theileri infection. Additionally, 12 samples positive for T. theileri were detected in cattle from other 11 farms. From a total of 30 blood samples positive by HCT and/or PCR from 17 farms, seven were characterized to evaluate the genetic polymorphism of T. theileri through sequence analysis of PCR-amplified CATL DNA sequences. All CATL sequences of T. theileri from Thai cattle clustered with sequences of the previously described phylogenetic lineages TthI and TthII, supporting only two major lineages of T. theileri in cattle around the world. However, 11 of the 29 CATL sequences analyzed showed to be different, disclosing an unexpectedly large polymorphic genetic repertoire, with multiple genotypes of T. theileri not previously described in other countries circulating in Thai cattle. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have sequenced genes encoding cathepsin L-like (CatL-like) cysteine proteases from isolates of Trypanosoma rangeli from humans, wild mammals and Rhodnius species of Central and South America. Phylogenetic trees of sequences encoding mature CatL-like enzymes of T rangeli and homologous genes from other trypanosomes, Leishmania spp. and bodonids positioned sequences of T rangeli (rangelipain) closest to T cruzi (cruzipain). Phylogenetic tree of kinetoplastids based on sequences of CatL-like was totally congruent with those derived from SSU rRNA and gGAPDH genes. Analysis of sequences from the CatL-like catalytic domains of 17 isolates representative of the overall phylogenetic diversity and geographical range of T rangeli supported all the lineages (A-D) previously defined using ribosomal and spliced leader genes. Comparison of the proteolytic activities of T rangeli isolates revealed heterogeneous banding profiles of cysteine proteases in gelatin gels, with differences even among isolates of the same lineage. CatL-like sequences proved to be excellent targets for diagnosis and genotyping of T rangeli by PCR. Data from CatL-like encoding genes agreed with results from previous studies of kDNA markers, and ribosomal and spliced leader genes, thereby corroborating clonal evolution, independent transmission cycles and the divergence of T rangeli lineages associated with sympatric species of Rhodnius. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterized sequences from genes encoding cathepsin L-like (CatL-like) cysteine proteases from African and South American isolates of Trypanosoma vivax and T. vivax-like organisms, and evaluated their suitability as genetic markers for population structure analysis and diagnosis. Phylogenetic analysis of sequences corresponding to CatL-like catalytic domains revealed substantial polymorphism, and clades of sequences (TviCatL1-9) were separated by large genetic distances. TviCatL1-4 sequences were from cattle isolates from West Africa (Nigeria and Burkina Faso) and South America (Brazil and Venezuela), which belonged to the same T. vivax genotype. T. vivax-like genotypes from East Africa showed divergent sequences, including TviCatL5-7 for isolates from Mozambique and TviCatL8-9 for an isolate from Kenya. Phylogenetic analysis of CatL-like gene data supported the relationships among trypanosome species reflected in the phylogenies based on the analysis of small subunit (SSU) of ribosomal RNA gene sequence data. The discovery of different CatL-like sequences for each genotype, defined previously by ribosomal DNA data, indicate that these sequences provide useful targets for epidemiological and population genetic studies. Regions in CatL-like sequences shared by all T. vivax genotypes but not by other trypanosomes allowed the establishment of a specific and sensitive diagnostic PCR for epidemiological studies in South America and Africa. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sugarcane is an important crop that has recently become subject to attacks from the weevil Sphenophorus levis, which is not efficiently controlled with chemical insecticides. This demands the development of new control devices for which digestive physiology data are needed. In the present study, ion-exchange chromatography of S. levis whole midgut homogenates, together with enzyme assays with natural and synthetic substrates and specific inhibitors, demonstrated that a cysteine proteinase is a major proteinase, trypsin is a minor one and chymotrypsin is probably negligible. Amylase, maltase and the cysteine proteinase occur in the gut contents and decrease throughout the midgut; trypsin is constant in the entire midgut, whereas a membrane-bound aminopeptidase predominates in the posterior midgut. The cysteine proteinase was purified to homogeneity through ion-exchange chromatography. The purified enzyme had a mass of 37 kDa and was able to hydrolyze Z-Phe-Arg-MCA and Z-Leu-Arg-MCA with k(cat)/K(m) values of 20.0 +/- 1.1 mu M(-1) s(-1) and 30.0 +/- 0.5 mu M(-1) s(-1), respectively, but not Z-Arg-Arg-MCA. The combined results suggest that protein digestion starts in the anterior midgut under the action of a cathepsin L-like proteinase and ends on the surface of posterior midgut cells. All starch digestion takes place in anterior midgut. These data will be instrumental to developing S. levis-resistant sugarcane. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cathepsin L-like proteinases (CAL) are major digestive proteinases in the beetle Tenebrio molitor. Procathepsin Ls 2 (pCAL2) and 3 (pCAL3) were expressed as recombinant proteins in Escherichia coil, purified and activated under acidic conditions. Immunoblot analyses of different T. molitor larval tissues demonstrated that a polyclonal antibody to pCAL3 recognized pCAL3 and cathepsin L 3 (CAD) only in the anterior two-thirds of midgut tissue and midgut luminal contents of T. molitor larvae. Furthermore, immunocytolocalization data indicated that pCAL3 occurs in secretory vesicles and microvilli in anterior midgut Therefore CAL3, like cathepsin L 2 (CAL2), is a digestive enzyme secreted by T. molitor anterior midgut CAD hydrolyses Z-FR-MCA and Z-RR-MCA (typical cathepsin substrates), whereas CAL2 hydrolyses only Z-FR-MCA. Active site mutants (pCAL2C25S and pCAL3C265) were constructed by replacing the catalytic cysteine with serine to prevent autocatalytic processing. Recombinant pCAL2 and pCAL3 mutants (pCAL2C25S and pCAL3C26S) were prepared, crystallized and their 3D structures determined at 1.85 and 2.1 angstrom, respectively. While the overall structure of these enzymes is similar to other members of the papain superfamily, structural differences in the S2 subsite explain their substrate specificities. The data also supported models for CAL trafficking to lysosomes and to secretory vesicles to be discharged into midgut contents. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Earth’s biota produces vast quantities of polymerized silica at ambient temperatures and pressures by mechanisms that are not understood. Silica spicules constitute 75% of the dry weight of the sponge Tethya aurantia, making this organism uniquely tractable for analyses of the proteins intimately associated with the biosilica. Each spicule contains a central protein filament, shown by x-ray diffraction to exhibit a highly regular, repeating structure. The protein filaments can be dissociated to yield three similar subunits, named silicatein α, β, and γ. The molecular weights and amino acid compositions of the three silicateins are similar, suggesting that they are members of a single protein family. The cDNA sequence of silicatein α, the most abundant of these subunits, reveals that this protein is highly similar to members of the cathepsin L and papain family of proteases. The cysteine at the active site in the proteases is replaced by serine in silicatein α, although the six cysteines that form disulfide bridges in the proteases are conserved. Silicatein α also contains unique tandem arrays of multiple hydroxyls. These structural features may help explain the mechanism of biosilicification and the recently discovered activity of the silicateins in promoting the condensation of silica and organically modified siloxane polymers (silicones) from the corresponding silicon alkoxides. They suggest the possibility of a dynamic role of the silicateins in silicification of the sponge spicule and offer the prospect of a new synthetic route to silica and siloxane polymers at low temperature and pressure and neutral pH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two recombinant Fasciola hepatica antigens, saposin-like protein-2 (recSAP2) and cathepsin L-1 (recCL1), were assessed individually and in combination in enzyme-linked immunosorbent assays (ELISA) for the specific serodiagnosis of human fasciolosis in areas of low endemicity as encountered in Central Europe. Antibody detection was conducted using ProteinA/ProteinG (PAG) conjugated to alkaline phosphatase. Test characteristics as well as agreement with results from an ELISA using excretory-secretory products (FhES) from adult stage liver flukes was assessed by receiver operator characteristic (ROC) analysis, specificity, sensitivity, Youdens J and overall accuracy. Cross-reactivity was assessed using three different groups of serum samples from healthy individuals (n=20), patients with other parasitic infections (n=87) and patients with malignancies (n=121). The best combined diagnostic results for recombinant antigens were obtained using the recSAP2-ELISA (87% sensitivity, 99% specificity and 97% overall accuracy) employing the threshold (cut-off) to discriminate between positive and negative reactions that maximized Youdens J. The findings showed that recSAP2-ELISA can be used for the routine serodiagnosis of chronic fasciolosis in clinical laboratories; the use of the PAG-conjugate offers the opportunity to employ, for example, rabbit hyperimmune serum for the standardization of positive controls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helminth parasites (nematodes, flatworms and cestodes) infect over 1 billion of the world's population causing high morbidity and mortality. The large tissue-dwelling worms express papain-like cysteine peptidases, termed cathepsins that play important roles in virulence including host entry, tissue migration and the suppression of host immune responses. Much of our knowledge of helminth cathepsins comes from studies using flatworms or trematode (fluke) parasites. The developmentally-regulated expression of these proteases correlates with the passage of parasites through host tissues and their encounters with different host macromolecules. Recent phylogenetic, biochemical and structural studies indicate that trematode cathepsins exhibit overlapping but distinct substrate specificities due to divergence within the protease active site. Here we provide an overview of the evolution, biochemistry and structure of these important enzymes and highlight how recent advances in proteomics and gene silencing techniques are allowing researchers to probe their biological functions. We focus mainly on members of the cathepsin L gene family of the animal and human pathogen, Fasciola hepatica, because of our deep understanding of their function, biochemistry and structure.